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Abstract: A dramatic increase in the density of marker panels has been expected to increase the
accuracy of genomic selection (GS), unfortunately, little to no improvement has been observed.
By including all variants in the association model, the dimensionality of the problem should be
dramatically increased, and it could undoubtedly reduce the statistical power. Using all Single
nucleotide polymorphisms (SNPs) to compute the genomic relationship matrix (G) does not necessarily
increase accuracy as the additive relationships can be accurately estimated using a much smaller
number of markers. Due to these limitations, variant prioritization has become a necessity to improve
accuracy. The fixation index (FST) as a measure of population differentiation has been used to identify
genome segments and variants under selection pressure. Using prioritized variants has increased the
accuracy of GS. Additionally, FST can be used to weight the relative contribution of prioritized SNPs
in computing G. In this study, relative weights based on FST scores were developed and incorporated
into the calculation of G and their impact on the estimation of variance components and accuracy
was assessed. The results showed that prioritizing SNPs based on their FST scores resulted in an
increase in the genetic similarity between training and validation animals and improved the accuracy
of GS by more than 5%.

Keywords: high density; sequence data; genomic selection; accuracy

1. Introduction

Recent advances in high-throughput genotyping and sequencing techniques have led to the
generation of dense marker panels and facilitated the genotyping of large numbers of individuals.
Because of the availability of these cost-effective genotyping technologies and the increase in sequencing
speed, large-scale genotyping for single-nucleotide polymorphisms (SNP) has become more affordable
and accessible. Genomic data provide an unprecedented opportunity to dissect the genetic basis of
complex traits and identify relevant functional associations.

From an animal breeding perspective, the use of genomic information results in a substantial
reduction in generation interval and an increase in the accuracy of predicted breeding values, leading
undoubtedly to an improvement in the genetic response [1–6]. Genomic selection (GS) is often carried
out using multiple regression or mixed linear models [7–12]. For both methods, the density of the SNP
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marker panel and the linkage disequilibrium (LD) structure between markers and quantitative trait
loci (QTL) have a great impact on accuracy. Regression-based methods directly model the association
between the phenotypes and all or a subset of the genotyped variants. Thus, their problems stem
mainly from the high dimensionality of the parameter space. As the effect of a QTL (often small for
complex traits) is distributed in a nontrivial manner between all markers that are in LD with the
causal mutation, there is little statistical power to accurately estimate its effect. Traditionally, SNP
filtering is conducted based on certain statistical criteria such as p-values for single-marker analyses or
quality-of-fit and model determination for Bayesian procedures such as BayesB [13] and BayesR [14].
The latter has shown some superiority for certain traits in the presence of low- and moderate-density
marker panels as compared with models that include all markers, however, they still suffer, although
to a lesser degree, from high false positives, multiple testing problems, high LD, and small SNP
effects, which have hampered at different degrees the efficiency of these methods [15–17]. Although
these factors are likely to affect the prioritization of relevant variants, they have limited to no effects
on prediction. An increase in SNP marker density, after a certain threshold, seems to not affect the
quality of the estimated observed relationship matrix (G) and thus the performance of mixed linear
model-based approaches. There was no difference in accuracy between the 777K SNP and the 54K
SNP panels [18]. This is because the quality of G when either 777K or 54K SNP panel were used was
not that different. Due to these limitations, prioritization of variants to be included in the association
model or to compute the genomic relationship matrix has become a necessity. Commercial livestock
species are under heavy artificial selection. The effects of such selection on the genome can be traced
through the changes in allele frequencies. The fixation index (FST) measures the rate of fixation through
the increase in homozygosity and it has become an important tool to study population structure in
humans, animals and plants. Chang et al. [19] proposed utilizing the FST which measures the allele
differentiation among subpopulations to identify segments of the genome under selection pressure.
There was an increased genomic similarity and improvement in the accuracy of genomic selection when
the FST scores were used to prioritize SNP markers in high-density panels as compared with using
BayesB [20] and BayesC [21] approaches. Furthermore, they showed that the genomic relationship
matrix and the accuracy could be improved using prioritized SNPs based on the FST scores.

Genomic best linear unbiased prediction (GBLUP) assumes equal weight for all SNPs [22,23].
Sun et al. [24] developed a two-step method for calculating weights in weighted GBLUP (WGBLUP).
If weights are known, WGBLUP calculates genomic estimated breeding values (GEBVs) similar to
the Bayesian method using the same weight. This method is effective for distinguishing major QTL,
however, the accuracy of the GEBVs is reduced since it shrinks small SNP effects to zero. To achieve
the highest accuracy, the weight formula needs to be modified to avoid having SNPs with no effect.
The use of a genomic relationship matrix that weights marker’s contribution can improve prediction
accuracy, but the improvement is trait and population specific due to differences in genetic architecture.
Weighted single-step GBLUP (WssGBLUP) have been developed for estimating weights within
single-step GBLUP (ssGBLUP) process [25,26]. Wang et al. [26] and Fragomeni et al. [27] evaluated
the performance of the WssGBLUP approach using simulation data. Two iterations of weights were
calculated from the variance explained by each SNP. Their results showed that weighting SNP could
be effective in improving the accuracy of GEBV prediction and in the estimation of marker effects.

With all these methods, the challenge was to determine how to derive the optimum set of weights
to compute the genomic relationship matrix. In this study, the FST scores-based prioritization method
developed by our group (Toghiani et al. [28] and Chang et al. [19]) has been be expanded to derive the
needed weights to compute G. The specific objectives of this study were to derive FST scores-based
relative weights for SNPs included in the computation of G and to assess the impact of different
strategies on the estimation of variance components and the accuracy of genomic selection.
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2. Materials and Methods

2.1. Data Simulation

The QMSim simulation software [29] was used to simulate the genomic and phenotypic data.
A randomly mated historical population was generated to initialize LD and to establish mutation-drift
equilibrium and was used as a base to create a population with average LD between adjacent markers
of 0.3. Three hundred historical generations were simulated based on random mating of an initial
8,000 animals, followed by an additional 5, 10, and 20 generations with population ranging between
12,000 and 17,000 animals. The base population (G0) was founded by 1000 males and 15,000 females
randomly selected from the historical generation. A trait with heritability equal to 0.30 was simulated
and all genetic variation was assumed to be due to the simulated QTL. The mating system was at
random throughout up to generation G0. We also simulated an additional 15,000 animals for each of
7 additional generations (G1–G7). The parents were sampled on their estimated breeding values (EBVs),
with a replacement rate of 50 and 20% for males and females, respectively. We assumed one progeny
per mating and a sex ratio of 50%. Each simulation scenario was replicated 5 times. The average of
the effective population size was equal to 323. Data from generation 6 (G6) was used as a training
population and that of generation 7 (G7) was used to evaluate (validation population) the proposed
method. All animals in the training and validation populations were genotyped with 400,000 SNP
markers simulated to be uniformly distributed along 10 chromosomes of 100 cM in length each to
approximate about 1.2 million SNP markers in the bovine genome. We sampled 200 biallelic QTL from
a Gamma distribution with shape and scale parameters equal to 0.4 and 0.15 respectively. We did not
allow any overlap between the SNP markers and QTL.

Additionally, QTL were assumed not to be genotyped. The residual variance was scaled
accordantly in each scenario of selected SNPs such that the heritability and phenotypic variance were
constant at the values of 0.3 and 1, respectively. Trait phenotypes were generated as the sum of an
overall mean, the random additive effects of QTL and their associated genotypes and the residual
terms. The latter were sampled from a normal distribution with zero mean and variance-covariance
matrices Iσe

2 where σe
2 is the residual variance.

2.2. SNPs Prioritization Based on FST Scores

Briefly, divergence between populations and subpopulations is often due to differential selection
pressure. Wright’s fixation indexes (FST) have been used to measure the level of genetic differentiation
between populations based on change in allele frequencies. The FST scores were calculated following
Nei [30] and Chang et al. [19]. Specifically, the trait phenotypes for animals in generation 6 (G6) were
divided into three sub-populations based on the 5% and 95% quantiles (below the 5% quantile (S1),
between 5% and 95% quantiles (S0), and above the 95% quantile (S2)). Genotypes of individuals (1500)
in sub-populations S1 and S2 were used to calculate the FST scores. For each locus, the global FST

estimator was defined as:

FST =
HT −HS

HT
with HT = 2 × p × q, HS =

HS1 ∗ ns1 + HS2 ∗ ns2

ns1 + ns2
, and HSi = 2 × pSi × qSi (1)

where pSi and qSi are the allele frequencies in subpopulation i, nS1 and nS2 are the number of individuals
of the subpopulations S1 and S2, HS is the average heterozygosity of subpopulations, and HT is the
heterozygosity based on the total population.

2.3. Prioritized SNPs and Genomic Relationships

Several methods have been proposed to calculate the genomic relationships [31–35]. In animal
breeding applications, the genomic relationship matrix (G) is often calculated using the method
proposed by VanRaden [32]. It basically measures the similarity of marker genotypes between two
individuals at a large number of loci independent of their mode of inheritance. Estimating observed
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additive relationships using identity by state provides a better estimate than using pedigree information,
but still suffers from several problems including nonzero estimates of realized relationship between two
individuals that are not related by ancestry as it was shown by [36–38], negative off-diagonal elements,
and the inevitable noise associated with these estimates. Furthermore, several studies [4,18,39] have
shown that little to no improvement in G were observed with an increase in the number of SNPs used
for its calculation. Current methods used to calculate G, generally, give the same weight to all the
markers, and thus could not guarantee the optimality of genetic similarity between individuals at the
QTL. For that purpose, contributions of the SNPs used to compute G have to be weighted according
to their importance on the phenotype (strength of association with the phenotype). To maximize the
functional genomic similarity between individuals, the SNPs have to be prioritized based on their
ability to increase genetic or phenotypic similarity between individuals. Conversely, individuals with
different genetic values or phenotypes are likely to have much lower genomic similarity at QTL than
the expected or observed additive relationships. It is worth mentioning that FST is only a measure of
population differentiation and an increase in functional similarity is achieved through an increase of
the relative weight of prioritized markers.

The challenge in maximizing the genomic similarities is finding the relative weights for the SNPs
used in the calculation of G. In this study, FST scores were used to prioritize and to assign relative
weights to the SNP markers. The top 20K SNPs based on their FST scores were used either alone or
with the remaining 380K SNPs to compute G with or without weighting. When only the top 20K SNPs
were used to compute G, the following two scenarios were considered: 1) equal weights for all SNPs
or 2) weights proportional to each SNP FST score. When all 400K SNP markers were used, the different
weighting scenarios evaluated are presented in Table 1.

The relative weights were calculated using the following equation:

wi =
FSTi∑N

j=1 FST j

× N (2)

where wi is the relative weight for SNP i, Fsti is the FST score for SNP i and N is the total number of
SNPs (400K or 20K).

Table 1. Variance components and heritability (SE) for different weighting scenarios of the prioritized
20K and the remaining 380K SNPs when the full panel (400K SNPs) was used to compute the genomic
relationship matrix (average over 5 replicates).

Scenario 2 Weighting (%) Genetic
Variance

Residual
Variance

Heritability
20K 1 380K

1 = (100,0) 100 0 0.196 (0.026) 0.671 (0.042) 0.228 (0.033)

2 = (90,10) 90 10 0.213 (0.018) 0.648 (0.032) 0.247 (0.023)

3 = (75,25) 75 25 0.232 (0.015) 0.633 (0.025) 0.268 (0.018)

4 = (50,50) 50 50 0.257 (0.016) 0.618 (0.021) 0.294 (0.018)

5 = (25,75) 258 75 0.279 (0.021) 0.619 (0.021) 0.311 (0.023)

6 = (PS 3,PS) PS PS 0.251 (0.032) 0.629 (0.037) 0.285 (0.037)

7 = Equal
weights Equal weights Equal weights 0.247 (0.027) 0.692 (0.016) 0.263 (0.025)

1 Top 20K SNPs based on FST scores; 2 (x,y) are the percentages of the weights allocated to the prioritized top 20K
and the remaining 380K SNPs, respectively; 3 contribution proportional to the SNP FST score.

2.4. Data Analysis

For all scenarios, 10,000 and 5000 animals were randomly selected from G6 and G7, respectively.
For each scenario, the genomic relationship matrix was computed with the appropriate number of
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markers and the weighting factors and the analysis was carried out using the following mixed linear
model:

y = Xb + Zu + e (3)

where y is a N × 1 column vector of phenotypes, X is a N × p known incidence matrix of the p predictor
variables, b is a p × 1 column vector of fixed effects regression coefficients, Z is a N × q known incidence
matrices with the appropriate dimensions for the q random effects, u is a q × 1 column vector of genomic
breeding values, and e is a N × 1 column vector of random residuals. Additionally, it was assumed
that u ∼ N

(
0, Gσ2

u

)
, with σ2

u being the genetic variance.
The AIREMLF90 program [40] was used to estimate variance components and to predict the

genomic breeding values for the different scenarios. Accuracy of genomic evaluation was defined
as the correlation between true and estimated breeding values in the validation population. Each
simulation scenario was replicated 5 times.

3. Results

Table 1 presents the estimates of the variance components and heritability and their associated
standard deviations for the different scenarios when all 400K SNP markers were used to compute the
genomic relationship matrix. In general, the percentage of genetic variance recovered increased with
a decrease of the percentage weight assigned to the prioritized top 20K SNPs reaching a maximum
when the top SNPs (based on FST scores) accounted for 25% or less of the weights used to compute
G. In all cases, the genetic variance was underestimated when no weights were used (scenario 7 in
Table 1). Similarly, only two-thirds of the genetic variance were recovered when zero weights were
assigned to the 380K nonprioritized SNPs (scenario 1 in Table 1).

Table 2 presents the distribution of off-diagonal elements of G for different weighting scenarios.
In fact, the portion of genomic relationships between training and validation individuals exceeding
0.03 was 5.24% when all 400K SNPs were used with equal weight. The same portion was 5.59%, 7.22%,
11.13%, 14.38%, and 16.78% when the relative weight assigned to the top 20K prioritized SNPs in the
calculation of G was 25%, 50%, 75%, 90% and 100%, respectively. When only the top 20K prioritized
SNPs were used to compute G, weighting the contribution of each marker by its FST score resulted in
an increase in the off-diagonal elements exceeding 0.03 (Table 3). The increase in the percentage of
off-diagonal elements exceeding 0.03 is an indicator of increased similarity between the training and
validation datasets and could lead to increase in accuracy.

Table 2. Distribution of off-diagonal elements (OD) of the genomic relationships matrix corresponding
to the training and validation individuals using all 400 SNPs and for different weighting scenarios for
the prioritized 1 (20K) and nonprioritized (380K) SNPs (in %).

OD Weights (wi , wj) No Weight (wi=1)

OD < −0.05 2.32 1.61
0.05 < OD < −0.03 9.85 8.39
0.03 < OD < −0.01 28.18 29.35
−0.01 < OD < 0.01 33.48 36.14
0.01 < OD < 0.03 17.21 16.52
0.03 < OD < 0.05 5.52 4.86

OD > 0.05 3.46 4.86
1 SNPs selected based on FST scores.
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Table 3. Distribution of off-diagonal elements (OD) of the genomic relationship matrix corresponding
to the training and validation individuals using the prioritized 1 20K SNPs and for different weighting
scenarios (in %).

OD
Weights
(wi , wj)

No Weight
(wi=1)

Scenario

(100,0) 2 (90,10) (75,25) (50,50) (25,75)

OD < −0.05 0.92 0.00 2.32 1.66 0.92 0.25 0.03
−0.05 < OD < −0.03 4.60 0.77 9.85 8.72 6.81 3.67 1.42
−0.03 < OD < −0.01 30.26 29.77 28.18 29.16 30.45 31.72 31.22
−0.01 < OD < 0.01 43.93 52.43 33.49 35.54 38.86 44.57 49.81
0.01 < OD < 0.03 13.52 11.52 17.21 16.74 15.74 13.64 11.89
0.03 < OD < 0.05 4.04 3.30 5.52 5.01 4.36 3.68 3.36

OD > 0.05 2.73 2.21 3.46 3.19 2.86 2.49 2.27
1 SNPs selected based on FST scores; 2 (x,y) are the percentages of the weights allocated to the prioritized top 20K
and the remaining 380K SNPs, respectively.

When the same weight (wi = 1) was used for all 400K SNP markers to compute G, the accuracy of
genomic prediction (correlation between true and predicted BVs) was 0.690 (Figure 1) and it increased
to 0.718 when all SNPs in the panel were weighted by their relative FST score. When the relative
weight of the top 20K prioritized SNPs in the calculation of G increased, higher accuracy was achieved.
In fact, accuracy increased by 4.3%, 5.2%, 5.4%, 5.3%, and 5.2% as compared with the scenario where
all markers had the same weight (wi = 1) when the relative weight assigned to the top 20K prioritized
SNPs in the calculation of G was 25%, 50%, 75%, 90% and 100%, respectively (Figure 1).

A comparison between the different weighting scenarios for the contribution of the 20K prioritized
SNPs and the remaining 380K markers showed a superiority for scenarios one to six as compared
with scenario seven (equal weights) in terms of quality-of-fit of the model (Table 4). In fact, the −2Log
likelihood ranged from 26,397.30 to 26,746.90 for scenarios one to six with the best fit being for the
third and fourth scenarios. When the same weights were assigned to all 400K SNP (scenario seven),
the −2Log likelihood was 27,378.30. Similar behavior was observed for the estimated residual variance
(Table 4). Regression of the estimated breeding values on the true ones showed a systematic under
estimation for all seven scenarios, although the bias was slightly smaller for scenarios one to six
(Table 4).

Table 4. Residual variance and log-likelihood of the model and the parameters (intercept and slope) of
the regression of the estimated on the true breeding values for different weighting scenarios.

Scenario Residual Variance Intercept Slope −2LogL

1 = (100,0) 0.671 (0.04) −1.208 (0.04) 0.664 (0.03) 26,409.13 (310.78)
2 = (90,10) 0.648 (0.03) −1.228 (0.04) 0.675 (0.02) 26,397.40 (275.55)
3 = (75,25) 0.633 (0.03) −1.244 (0.04) 0.683 (0.02) 26,404.90 (233.44)
4 = (50,50) 0.618 (0.02) −1.240 (0.05) 0.682 (0.02) 26,489.84 (180.68)
5 = (25,75) 0.619 (0.02) −1.185 (0.06) 0.651 (0.02) 26,746.99 (106.85)
6 = (PS,PS) 0.629 (0.04) −1.205 (0.04) 0.662 (0.03) 26,619.76 (232.62)

7 = Equal weight 0.692 (0.02) −0.921 (0.13) 0.505 (0.05) 27,378.30 (82.38)
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Figure 1. Accuracy of genomic prediction for different weighting scenarios for the contribution of the
20K prioritized SNPs and the remaining 380K markers (x,y). Horizontal lines indicate the accuracy
using only the top 20K SNPs with (red) or without (green) weights SNPs.

4. Discussion

We showed that only a portion of the genetic variance was recovered for the different scenarios.
The inability to recover all the genetic variance is due to the large number of QTL with very small
effects. In fact, 55% of QTL have a true effect smaller than one-tenth of one percent of the genetic
variance and an additional 20% of QTL have an effect smaller than 0.5% of the total genetic variance.
These small effect QTL are hard to track effectively when the LD is moderate to low. Across the different
scenarios, there is an underestimation trend of the residual variance, although it does not seem to be
any systematic bias. Heritability was clearly underestimated when the majority of the weight (≥90%)
was allocated to the prioritized top 20K SNPs (scenarios one and two in Table 2). In fact, for those
scenarios, estimates of the heritability are likely to be biased. For the remaining scenarios, although
there is a general trend of an underestimation of the heritability, estimates are not likely to be biased.
When only the unweighted top 20K prioritized SNPs were used to compute G, the genetic and residual
variances were very similar to the estimates obtained for scenario one in Table 2.

Intrinsically, the contribution of a SNP marker to the estimation of G is weighted by its minor
allele frequency (MAF), thus favoring markers with low MAF. However, it is not weighed by the
size of the marker effect. Consequently, after a certain number of SNP markers are included in the
computation of G, little to no improvement is expected. Chang et al. [19] showed that the limited
change in G with additional markers could be an indicator of the sufficiency of available SNPs in
estimating the realized relationships. However, such sufficiency is not a guarantee of the optimality
of such matrix for the implementation of association and genome selection analyses. In fact, as the
number of randomly selected SNPs increased from 40K to 400K, the matrix G inched closer to the
expected additive relationship matrix (A). Furthermore, they showed that a genomic relationship
matrix computed based on a selected subset on 20K markers was markedly different from A. In this
study, we further prove that within those selected 20K SNPs additional improvements could be
achieved through appropriate weighting of the contribution of these SNPs in the calculation of G.

Weighting all markers with their relative FST scores resulted in a 4.3% increase in accuracy as
compared with the same weight scenario (wi = 1). Using only the prioritized 20K SNPs with or without
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weights resulted in a 5.2% and 3.5% increase in accuracy as compared with the same weight scenario.
As the density of the marker panel increases, using all SNPs to compute G is not the best option.

These results clearly indicate that additive relationships between individuals could be accurately
estimated with a reasonably small number of well distributed SNP markers, however, that does not
mean that the accuracy of genomic selection cannot be improved using high-density marker panels or
even sequence data. To achieve that goal, the genomic matrix has to evolve from a measure of additive
relationships to an optimum measure of genetic similarity at QTL between individuals. The FST scores
seem to be an efficient prioritization tool to achieve such a goal, however, it should be noted that FST

scores are only measures of fixation index. A combination of metrics of fixation index and index of
genetic differentiation could lead to better representation of population partitioning [41] and could
enhance the prioritization and weighting of SNP markers.

5. Conclusions

The dramatic increase in the number of identified common and rare variants due to advances
in NGS was expected to significantly increase the accuracy of GWAS and GS. Unfortunately, little to
no improvement in accuracy was observed using NGS or high-density marker data. In spite of the
repeated argument that all needed information is already captured by the available marker panels, the
results of this study clearly show that the lack of improvement in accuracy is due to the limitations of
the methods used rather than the limited additional information in the high-density and sequence data.
Prioritizing SNP markers based on their FST scores and using the latter to compute relative weights
has increased the genetic similarity between training and validation animals. Furthermore, it resulted
in more than 5% improvement in accuracy. These results clearly indicate that additive relationships
between individuals could be accurately estimated with a reasonably small number of well distributed
SNP markers, however, that does not mean that accuracy of genomic selection cannot be improved
using high-density marker panels. The genomic matrix should evolve from a measure of realized
additive relationships to an optimum measure of genetic similarity between individuals. The current
method used to calculate the genomic relationship matrix gives the same weight to all the markers and
thus does not guarantee the optimality of genetic similarity at QTL.

Author Contributions: Conceptualization, L.-Y.C. and R.R.; data curation, L.-Y.C.; formal analysis, L.-Y.C. and
R.R.; funding acquisition, S.E.A. and R.R.; investigation, L.-Y.C. and R.R.; project administration, R.R.; software,
L.-Y.C. and R.R.; supervision, R.R.; validation, L.-Y.C.; writing—original draft, L.-Y.C. and R.R.; writing—review
and editing, L.-Y.C., S.T., E.H.H., S.E.A. and R.R.

Funding: This research was funded by the USDA-ARS, grant number 58-3030-6-002.

Acknowledgments: The authors thank the breeding and genetics group at the University of Georgia for their
constructive comments and insightful discussion. We also thank the anonymous reviewers and the guest editors
for their time and effort to improve the quality of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Balloux, F.; Brunner, H.; Lugon-Moulin, N.; Hausser, J.; Goudet, J. Microsatellites can be misleading:
An empirical and simulation study. Evolution 2000, 54, 1414–1422. [CrossRef] [PubMed]

2. VanRaden, P.; Van Tassell, C.; Wiggans, G.; Sonstegard, T.; Schnabel, R.; Taylor, J.; Schenkel, F.; Van Tassell, C.;
Schnabel, R. Invited Review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy
Sci. 2009, 92, 16–24. [CrossRef] [PubMed]

3. Su, G.; Guldbrandtsen, B.; Gregersen, V.; Lund, M. Preliminary investigation on reliability of genomic
estimated breeding values in the Danish Holstein population. J. Dairy Sci. 2010, 93, 1175–1183. [CrossRef]
[PubMed]

4. Su, G.; Madsen, P.; Nielsen, U.S.; Mäntysaari, E.A.; Aamand, G.P.; Christensen, O.F.; Lund, M.S. Genomic
prediction for Nordic red cattle using one-step and selection index blending. J. Dairy Sci. 2012, 95, 909–917.
[CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.0014-3820.2000.tb00573.x
http://www.ncbi.nlm.nih.gov/pubmed/11005307
http://dx.doi.org/10.3168/jds.2008-1514
http://www.ncbi.nlm.nih.gov/pubmed/19109259
http://dx.doi.org/10.3168/jds.2009-2192
http://www.ncbi.nlm.nih.gov/pubmed/20172238
http://dx.doi.org/10.3168/jds.2011-4804
http://www.ncbi.nlm.nih.gov/pubmed/22281355


Genes 2019, 10, 922 9 of 10

5. Schefers, J.M.; Weigel, K.A. Genomic selection in dairy cattle: Integration of DNA testing into breeding
programs. Anim. Front. 2012, 2, 4–9. [CrossRef]

6. Zeng, J.; Toosi, A.; Fernando, R.L.; Dekkers, J.C.M.; Garrick, D.J. Genomic Selection of Purebred Animals for
Crossbred Performance in the Presence of Dominant Gene Action. Genet. Sel. Evol. 2013, 45, 11. [CrossRef]
[PubMed]

7. Da, Y.; Wang, C.; Wang, S.; Hu, G. Mixed Model Methods for Genomic Prediction and Variance Component
Estimation of Additive and Dominance Effects Using SNP Markers. PLoS ONE 2014, 9, e87666. [CrossRef]
[PubMed]

8. Clark, S.A.; Hickey, J.M.; Van Der Werf, J.H. Different models of genetic variation and their effect on genomic
evaluation. Genet. Sel. Evol. 2011, 43, 18. [CrossRef] [PubMed]

9. Endelman, J.B. Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP.
Plant Genome 2011, 4, 250–255. [CrossRef]

10. Goddard, M.E.; Hayes, B.J. Genomic selection. J. Anim. Breed. Genet. 2017, 124, 323–330. [CrossRef]
[PubMed]

11. Pérez, P.; Campos, G.D.L. Genome-Wide Regression and Prediction with the BGLR Statistical Package.
Genetics 2014, 198, 483–495. [CrossRef] [PubMed]

12. Pérez, P.; de los Campos, G.; Crossa, J.; Gianola, D. Genomic-enabled prediction based on molecular markers
and pedigree using the Bayesian linear regression package in R. Plant Genome 2010, 3, 106–116. [CrossRef]
[PubMed]

13. Goddard, M.E.; Meuwissen, T.H. Prediction of identity by descent probabilities from marker-haplotypes.
Genet. Sel. Evol. 2001, 33, 605–634.

14. Erbe, M.; Hayes, B.; Matukumalli, L.; Goswami, S.; Bowman, P.; Reich, C.; Mason, B.; Goddard, M.;
Goddard, M. Improving accuracy of genomic predictions within and between dairy cattle breeds with
imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 2012, 95, 4114–4129. [CrossRef]
[PubMed]

15. Lai, K.; Duran, C.; Berkman, P.J.; Lorenc, M.T.; Stiller, J.; Manoli, S.; Hayden, M.J.; Forrest, K.L.; Fleury, D.;
Baumann, U.; et al. Single nucleotide polymorphism discovery from wheat next-generation sequence data.
Plant Biotechnol. J. 2012, 10, 743–749. [CrossRef] [PubMed]

16. Farrer, R.A.; Henk, D.A.; MacLean, D.; Studholme, D.J.; Fisher, M.C. Using False Discovery Rates to
Benchmark SNP-callers in next-generation sequencing projects. Sci. Rep. 2013, 3, 1512. [CrossRef] [PubMed]

17. Ribeiro, A.; Golicz, A.; Hackett, C.A.; Milne, I.; Stephen, G.; Marshall, D.; Flavell, A.J.; Bayer, M.
An investigation of causes of false positive single nucleotide polymorphisms using simulated reads
from a small eukaryote genome. BMC Bioinform. 2015, 16, 382. [CrossRef] [PubMed]

18. Su, G.; Brøndum, R.F.; Ma, P.; Guldbrandtsen, B.; Aamand, G.P.; Lund, M.S. Comparison of genomic
predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism
marker panels in Nordic Holstein and Red Dairy Cattle populations. J. Dairy Sci. 2012, 95, 4657–4665.
[CrossRef] [PubMed]

19. Chang, L.Y.; Toghiani, S.; Ling, A.; Aggrey, S.E.; Rekaya, R. Correction to: High density marker panels, SNPs
prioritizing and accuracy of genomic selection. BMC Genet. 2018, 19, 4. [CrossRef] [PubMed]

20. Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense
marker maps. Genetics 2001, 157, 1819–1829. [PubMed]

21. Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of the bayesian alphabet for genomic
selection. BMC Bioinform. 2011, 12, 186. [CrossRef] [PubMed]

22. Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol.
2010, 42, 2. [CrossRef] [PubMed]

23. Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The impact of genetic relationship information on genome-assisted
breeding values. Genetics 2008, 177, 2389–2397. [CrossRef] [PubMed]

24. Sun, X.; Fernando, R.L.; Garrick, D.J.; Dekkers, J.C.M. An iterative approach for efficient calculation of
breeding values and genome-wide association analysis using weighted genomic BLUP. J. Anim. Sci. 2011,
89, 28.

25. Aguilar, I.; Misztal, I.; Johnson, D.; Legarra, A.; Tsuruta, S.; Lawlor, T. Hot topic: A unified approach to utilize
phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy
Sci. 2010, 93, 743–752. [CrossRef] [PubMed]

http://dx.doi.org/10.2527/af.2011-0032
http://dx.doi.org/10.1186/1297-9686-45-11
http://www.ncbi.nlm.nih.gov/pubmed/23621868
http://dx.doi.org/10.1371/journal.pone.0087666
http://www.ncbi.nlm.nih.gov/pubmed/24498162
http://dx.doi.org/10.1186/1297-9686-43-18
http://www.ncbi.nlm.nih.gov/pubmed/21575265
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.1111/j.1439-0388.2007.00702.x
http://www.ncbi.nlm.nih.gov/pubmed/18076469
http://dx.doi.org/10.1534/genetics.114.164442
http://www.ncbi.nlm.nih.gov/pubmed/25009151
http://dx.doi.org/10.3835/plantgenome2010.04.0005
http://www.ncbi.nlm.nih.gov/pubmed/21566722
http://dx.doi.org/10.3168/jds.2011-5019
http://www.ncbi.nlm.nih.gov/pubmed/22720968
http://dx.doi.org/10.1111/j.1467-7652.2012.00718.x
http://www.ncbi.nlm.nih.gov/pubmed/22748104
http://dx.doi.org/10.1038/srep01512
http://www.ncbi.nlm.nih.gov/pubmed/23518929
http://dx.doi.org/10.1186/s12859-015-0801-z
http://www.ncbi.nlm.nih.gov/pubmed/26558718
http://dx.doi.org/10.3168/jds.2012-5379
http://www.ncbi.nlm.nih.gov/pubmed/22818480
http://dx.doi.org/10.1186/s12863-018-0598-7
http://www.ncbi.nlm.nih.gov/pubmed/29448946
http://www.ncbi.nlm.nih.gov/pubmed/11290733
http://dx.doi.org/10.1186/1471-2105-12-186
http://www.ncbi.nlm.nih.gov/pubmed/21605355
http://dx.doi.org/10.1186/1297-9686-42-2
http://www.ncbi.nlm.nih.gov/pubmed/20105297
http://dx.doi.org/10.1534/genetics.107.081190
http://www.ncbi.nlm.nih.gov/pubmed/18073436
http://dx.doi.org/10.3168/jds.2009-2730
http://www.ncbi.nlm.nih.gov/pubmed/20105546


Genes 2019, 10, 922 10 of 10

26. Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-wide association mapping including
phenotypes from relatives without genotypes. Genet. Res. 2012, 94, 73–83. [CrossRef] [PubMed]

27. Fragomeni, B.O.; Lourenco, D.A.L.; Masuda, Y.; Legarra, A.; Misztal, I.; Masuda, Y. Incorporation of causative
quantitative trait nucleotides in single-step GBLUP. Genet. Sel. Evol. 2017, 49, 59. [CrossRef] [PubMed]

28. Toghiani, S.; Chang, L.Y.; Ling, A.; Aggrey, S.E.; Rekaya, R. Genomic differentiation as a tool for single
nucleotide polymorphism prioritization for Genome wide association and phenotype prediction in livestock.
Livest. Sci. 2017, 205, 24–30. [CrossRef]

29. Sargolzaei, M.; Schenkel, F.S. QMSim: A large-scale genome simulator for livestock. Bioinformatics 2009, 25,
680–681. [CrossRef] [PubMed]

30. Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323.
[CrossRef] [PubMed]

31. Amin, N.; Van Duijn, C.M.; Aulchenko, Y.S. A Genomic Background Based Method for Association Analysis
in Related Individuals. PLoS ONE 2007, 2, e1274. [CrossRef] [PubMed]

32. Gengler, N.; Mayeres, P.; Szydlowski, M. A simple method to approximate gene content in large pedigree
populations: Application to the myostatin gene in dual-purpose Belgian Blue cattle. Animal 2007, 1, 21–28.
[CrossRef] [PubMed]

33. VanRaden, P. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [CrossRef]
[PubMed]

34. Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information.
J. Dairy Sci. 2009, 92, 4656–4663. [CrossRef] [PubMed]

35. Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.;
Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 2010, 42, 565–569. [CrossRef] [PubMed]

36. Li, C.; Weeks, D.; Chakravarti, A. Similarity of DNA Fingerprints Due to Chance and Relatedness. Hum.
Hered. 1993, 43, 45–52. [CrossRef] [PubMed]

37. Blouin, M.S.; Lacaille, V.; Lotz, S.; Parsons, M. Use of microsatellite loci to classify individuals by relatedness.
Mol. Ecol. 1996, 5, 393–401. [CrossRef] [PubMed]

38. Csilléry, K.; Johnson, T.; Beraldi, D.; Clutton-Brock, T.; Coltman, D.; Hansson, B.; Spong, G.; Pemberton, J.M.
Performance of Marker-Based Relatedness Estimators in Natural Populations of Outbred Vertebrates. Genetics
2006, 173, 2091–2101. [CrossRef] [PubMed]

39. VanRaden, P.M.; O’Connell, J.R.; Wiggans, G.R.; Weigel, K.A. Genomic evaluations with many more
genotypes. Genet. Sel. Evol. 2011, 43, 10. [CrossRef] [PubMed]

40. Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D. BLUPF90 and related programs (BGF90).
In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France,
19–23 August 2002; pp. 27–28.

41. Bird, C.E.; Karl, S.A.; Smouse, P.E.; Toonen, R.T. Detecting and measuring genetic differentiation.
In Phylogeography and Population Genetics in Crustacea; Koenemann, S., Held, C., Schubart, C., Eds.; Crustacean
Issues Series; CRC Press: Boca Raton, FL, USA, 2011; Volume 19, pp. 31–55.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0016672312000274
http://www.ncbi.nlm.nih.gov/pubmed/22624567
http://dx.doi.org/10.1186/s12711-017-0335-0
http://www.ncbi.nlm.nih.gov/pubmed/28747171
http://dx.doi.org/10.1016/j.livsci.2017.09.007
http://dx.doi.org/10.1093/bioinformatics/btp045
http://www.ncbi.nlm.nih.gov/pubmed/19176551
http://dx.doi.org/10.1073/pnas.70.12.3321
http://www.ncbi.nlm.nih.gov/pubmed/4519626
http://dx.doi.org/10.1371/journal.pone.0001274
http://www.ncbi.nlm.nih.gov/pubmed/18060068
http://dx.doi.org/10.1017/S1751731107392628
http://www.ncbi.nlm.nih.gov/pubmed/22444206
http://dx.doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
http://dx.doi.org/10.3168/jds.2009-2061
http://www.ncbi.nlm.nih.gov/pubmed/19700729
http://dx.doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
http://dx.doi.org/10.1159/000154113
http://www.ncbi.nlm.nih.gov/pubmed/8514326
http://dx.doi.org/10.1111/j.1365-294X.1996.tb00329.x
http://www.ncbi.nlm.nih.gov/pubmed/8688959
http://dx.doi.org/10.1534/genetics.106.057331
http://www.ncbi.nlm.nih.gov/pubmed/16783017
http://dx.doi.org/10.1186/1297-9686-43-10
http://www.ncbi.nlm.nih.gov/pubmed/21366914
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Simulation 
	SNPs Prioritization Based on FST Scores 
	Prioritized SNPs and Genomic Relationships 
	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

